Linear Algebra Examples

Solve Using an Inverse Matrix -4x+9y=41 , 5x-4y=-44
-4x+9y=414x+9y=41 , 5x-4y=-445x4y=44
Step 1
Find the AX=BAX=B from the system of equations.
[-495-4][xy]=[41-44][4954][xy]=[4144]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
Step 2.1
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1adbc[dbca] where ad-bcadbc is the determinant.
Step 2.2
Find the determinant.
Tap for more steps...
Step 2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-4-4-594459
Step 2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply -44 by -44.
16-591659
Step 2.2.2.1.2
Multiply -55 by 99.
16-451645
16-451645
Step 2.2.2.2
Subtract 4545 from 1616.
-2929
-2929
-2929
Step 2.3
Since the determinant is non-zero, the inverse exists.
Step 2.4
Substitute the known values into the formula for the inverse.
1-29[-4-9-5-4]129[4954]
Step 2.5
Move the negative in front of the fraction.
-129[-4-9-5-4]129[4954]
Step 2.6
Multiply -129129 by each element of the matrix.
[-129-4-129-9-129-5-129-4][1294129912951294]
Step 2.7
Simplify each element in the matrix.
Tap for more steps...
Step 2.7.1
Multiply -129-41294.
Tap for more steps...
Step 2.7.1.1
Multiply -44 by -11.
[4(129)-129-9-129-5-129-4]4(129)129912951294
Step 2.7.1.2
Combine 4 and 129.
[429-129-9-129-5-129-4]
[429-129-9-129-5-129-4]
Step 2.7.2
Multiply -129-9.
Tap for more steps...
Step 2.7.2.1
Multiply -9 by -1.
[4299(129)-129-5-129-4]
Step 2.7.2.2
Combine 9 and 129.
[429929-129-5-129-4]
[429929-129-5-129-4]
Step 2.7.3
Multiply -129-5.
Tap for more steps...
Step 2.7.3.1
Multiply -5 by -1.
[4299295(129)-129-4]
Step 2.7.3.2
Combine 5 and 129.
[429929529-129-4]
[429929529-129-4]
Step 2.7.4
Multiply -129-4.
Tap for more steps...
Step 2.7.4.1
Multiply -4 by -1.
[4299295294(129)]
Step 2.7.4.2
Combine 4 and 129.
[429929529429]
[429929529429]
[429929529429]
[429929529429]
Step 3
Left multiply both sides of the matrix equation by the inverse matrix.
([429929529429][-495-4])[xy]=[429929529429][41-44]
Step 4
Any matrix multiplied by its inverse is equal to 1 all the time. AA-1=1.
[xy]=[429929529429][41-44]
Step 5
Multiply [429929529429][41-44].
Tap for more steps...
Step 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×2 and the second matrix is 2×1.
Step 5.2
Multiply each row in the first matrix by each column in the second matrix.
[42941+929-4452941+429-44]
Step 5.3
Simplify each element of the matrix by multiplying out all the expressions.
[-81]
[-81]
Step 6
Simplify the left and right side.
[xy]=[-81]
Step 7
Find the solution.
x=-8
y=1
 [x2  12  π  xdx ]